FIRST-OCCURENCE TIME OF HIGH-LEVEL CROSSINGS
IN A CONTINUOUS RANDOM PROCESS
. by

James R, Rice
Ferdinand P, Beer

CHPUBLISHED PRELIMINARY DATA

March 15, 19355

Research Grant
National Aeronautics and Space Administration

Institute of Research
Lehigh University
Bethlehem, Pennsylvania



ABSTRACT

13350

This paper deals with the statistical distribution of the
first-occurrence and first-recurrence times of the crossing of
a given level in a continuous random process, Approximate
forms of the first-occurrence and first-recurrence time densities
are found by considering the successive crossings to form a
renewal process, A relativély simple exponential distribution
is found to give an appropriate representation of the limiting
case when the crossings of the level under consideration are
statistically rare events, Numerical examples are worked out
for some stationary Gaussian processes, The work reported here
is of use in evaluating survival probabilities for réndomly

excited mechanical systems subjectl|to iailure uponfoccufrence
of a sufficiently high load, ~ e




" Introduction

A mechanical system subjected to a random loading may fail
when the stress in a critical member reaches a sufficiently high
level. This type of fallure is generally by fracture or by
excessive permanent deformation rendering the system inoperative,
If the stress has a finite probability of exceeding the high
level, then fallure is possible, and an important problem is to
find the probability that the system can operate without failure

for some given time,

More precisely, the following problem is to be considered.
Given a continuous and.differentiable random function x(t), one
wishes to find the probability that the value x = a will not be
exceeded in the time interval (0, t). Tris problem is called
the first-occurrence time problem and the probability density
Po(a, t) is the first-occurrence density, in the sense that
Po(a, t)dt is the probability, given x(0) < o, that x(t) first
crosses the level x = o in the time interval (t, t + dt)., If
fallure is defined as the first exceedance of x = a, the proba-
bility of failure, P.(a, T), in time T may be expressed in terms
of the first-occurrence density, po(e, t), The probability of
fatlure in (0, T) is unity if x(0) > a, and the probability of
fatlure in (0, T) is Ig po(o, t)dt if x(0) < «, Thus, where ¢

is the probability that x(0) > a,



Pa, T) = ¢+ (1= ¢ ) [ Pola, t)dt (1)

For stationary processes the first-occurrence time density
is closely related to the first-recurrence time probability

density, p (e, ), where p _(a, t)dr is the probability, given

X(ty) = a and i(to) < 0, that the next crossing of x = g« occurs

in the time interval (t; + v, t, + t + dv), Thus p (a, 1) 1s the
density for the time between successive downward and upward
crossings of x = a, To show the relation between the first-occur—
rence. and first-recurrence densities, consider a: stationary

random function x(t) and suppose that x(0) < «, With reference to
flgure 1, the time t at which x = a 1s first crossed is the first-
occurrence time.' Since it 1is given that x(0) < a, the orig%n t=20
falls in a time 1nterval between a downward and an upward crossing
of X = a, Referring again to figure 1, this interval has duration
T, where 7 is a first-recurrence time, The probability density
for the first-occurrence time may be written, by the law of condi-

tional probability, as

Pola, t) = f; Pola, tlt) qla, t)dr, (2)
where p,(a, tlr) is the first-occurrence time density, given that
the recurrence time interval including the origin is of duration
1, and where q(a, t)dr 1s the probability that the recurrence time

interval including the origin has a duration between T and t + dr,

Changing the point of view slightly, consider the random



process of figure 1 as a fixed curve and suppose the time axis is
attached to the curve so that the origin t = 0 has uniform proba-
bility of falling at any point where x 1s less than a, Then if
it 1s given that t = 0 falls in an interval of length 1, the
location of the point t = 0 is uniformly distributed on the
interval 1, and the time t to the end of the interval t (that is,

the first-occurrence time) has also uniform distribution, Thus

‘1/1 ift <«

po((!. tlt) = (3)

0 ifrt >«

The quantity gq(a, t)dt is the fraction of the time axis (for

which X < «) taken up by recurrence intervals between T and

T + dt, The fraction of such intervéls is p.(a, 1)dr and, since

the duration of each such interval;,is 1, a(ea, t) is proportional to

(e, 1), Normalizing,
Q(u. T) = —:':"‘pr(u. T). (u)
T

where T is the mean recurrence time (or the average time between
successive downward and upward crossings of x = a), Inserting
(3) and (4) in (2), the relation between the first-occurrence

and first-recurrence densities becomes

Pola, t) = _._%__ [ ppla, )dt = ..._i.:.. (1- [ p.a, Darl (5



There 1s a simple relation between moments of Po(a, t) and

p.(a, 1), By direct calculation

t" = [ot"po(a, t)dt = —a [i175%, (ey Darat
T

1l f@ ,.n 1 © n+l

P . t'p (a T)dtdr--—-——-—-—-f T p (a, t)dr
Tn+l
(n+1)7

It is interesting to note the forms of po(a, t) and pr(a, 1)
for a random process in which the probability of an upward
crossing of X = a 1s independent of thé past history of the
process, In this case p,(a, t) = pr(a, t) since these differ
merely by being conditioned on different past events which are
here irrelevant., In this case (5) becomes a simple integral
equation with the readily verified solution py(a, t) = pr(a, £) =
= exp (-t/T),

T

The expected number of upward crossings, N:, of x = a per

unit time appears frequently in the work to follow, This is given

in [1] as
N:(t) = [o v By (@, Vi tldv, (7)

where gxi(u, vy t) 1s the Joint probability density of x(t) and
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x(t), represented respectively by u and v, Clearly, for station-
ary processes N:(t) is independent of t, and in such cases the

notation N: will be used,

The solution of first-occurrence and first-recurrence
problems is a rather difficult matter, and a tractable exact
solution is known [2] only when x(t) is a Markov process.
Apparently, work done to date on occurrence and recurrence
problems for non-Markov processes has dealt primarily with the
determination of the interval distribution between successive
zero (or mean) crossings, Of particular interest 1s the work
in (3] and the approximations developed in [1], [43, and in [5]
which also contains a comparison of the results of several inves-
tigators., The technique used in the next section to solve approx-
imately for the recurrence density pr(a. 1) 1is similar to the
technique of [4] for the zero crossing proﬁlem. The method of
inclusion and exclusion may be used to write an exact expression
for pr(a, 1) which, while being untractable, does however serve
as a starting point for the approximation of the next sections,
Following the general development given in [6] for first-passage

times,
p.(a, 1) = p+l_(a. ) - [ Pysl- (ay Py T)dr

+ [:[; p+++‘_ (0.. r, 8, 1)ds dr




1T T
- fojr!s Prsss| - (ay P, 8, t, 1) dt ds dr

(8)
.l.Q.

where Paty.tt]- (a, ry 8y vsey Wy, 1) dr ds ,,, dw dr 1is the
probability, given a downward crossing of x = a at t = 0, that
upward crossings of x = a occur in the time intervals (r, r + dr),

(sy 5 +ds), s00s, (W, w + dw), and (1, 7 + dt ),




Renewal Process Approximatiqn

The calculation of terms beyond the first in the exact
expression (8) above for the first-recurrence time density,
pr(a, 1), is prohibitively difficult and indéed the calculation
of the general term is 1impossible except for the most trivial of
random processes, Thus an approximation must be constructed
which ylelds a tractable result for pr(a. 1), For small values
of 1 the first term in the series suffices as all remaining terms
are small, But for larger values of t this method is quite
inadequate, and an approximation valid for all time must be found,
The procedure to be used here consists of considering the crossings
of X = a to form a renewal process, That is, we approximate the
probability of an upward crossing of x = a, given several past

upward crossings and the downward ¢rossing at t = 0, by the pro-
an upward creseing of ¥ = o~ oiven only the last nrinr
upward crossing. When x(t) is a stationary process (as will be
-assumed throughout this section) the renewal approximation results
in a considerable simplification of (8), Further, it seems
intuitively clear that for large o, when the upward crossings of

X = g are on the average widely spaced in time as compared to the
average time between mean crossings, the probability of an upward

crossing should depend almost exclusively on the last prior given

upward crossing.,

Upon making the renewal approximation the various integrands

of equation (8) become



Renewal Process Approximation

The calculation of terms beyond the first in the exact
expression (8) above for the first-recurrence time density,
pr(u, t), is prohibitively difficult and 1ndéed the calculation
of the general term is impossible except for the most trivial of
random processes, Thus an approximation must be constructed
which yields a tractable result for pr(a, 1), For small values
of t the first term in the series suffices as all remaining terms
are small, But for larger values of 1 this method is quite
inadequate, and an approximation valid for all time must be found,
The procedure to be used here consists of considering the crossings
of x = o to form a renewal process, That is, we approximate the
probabllity of an upward crossing of x = a, given several past
upward crossings and the downward crossing at t = 0, by the pro-
bability of an upward crossing of x = o, given only the last prior
upward crossing., When x(t) is a stationary process (as will be
-assumed throughout this section) the renewal approximation results
in a considerable simplification of (8), Further, it seems
intuitively clear that for large a, when the upward crossings of
X = a are on the average widely spaced in time as compared to the
average time between mean crossings, the probabllity of an upward
crossing should depend almost exclusively on the last prior given

upward crossing,

Upon making the renewal approximation the various integrands

of equation (8) become



p++ '_(G. I‘. t)
. p+|+(a. T=r) p+|_(a, r)
Pisa](% Ty 8, T)

Pyfs(®s T=8) Py (o, s-r) Pyj.los T)

e . (9)

where p,|_(a,t)dtand p, |, («, t)dt are probabilities of upward
crossings of x = a in (t, t+dt), given respectively a downward
crossing of x = a at t = 0 and an upward crossing of x = a at

t = 0, In view of (9) the inclusion-exclusion formula (8) for

pp(a, T) becomes

p.(a, T) = p+|_(a. 1) - f;p‘_l_}(q. T=r) p+'_(a. r)dr
+ f;f; D+|+(°. T-3) p+|+(a. S-r) p+l_(a, r)ds dr
.o (10)

Due to the renewal process approximation all of the integrals
appearing in (10) are convolution integrals, Thus the Laplace
transform of any multiple integral appearing above 1s the product

of the Laplace transforms of thé functions in the integrand,



Introducing the transforms through the notation f(a, s) =
fgp(a, 1) e"®'dr, one has

f.(a, s) = fe1-(20 8) - (£ 14Cas 81 £, (2, s)
+ [f+|+((l’ s)]z f+|-(0.js) - s

or

f+ I_(a. S)

fr(a, 8) = (11)

l+f+|+(a, s)

Multiplying both sides cf the above equation by the denominator
of the right-hand side, inverting the transform and remembering
that a product of transforms inverts into a convolution integral,

one obtailns
T
prla, O + [ p (o thp, | (a, =t)dt = p | (o, 1) (12)

Equation (12) has a very simple interpretation and could be
written down immediately, In words, given a downward crossing
of x = a at t = 0, the probability of an upward crossing in

(t, r+dx‘) is the sum of the probability that the first crossing
occurs in (t, t+dtr ) and the probability that the first crossing

occurs for t<t with a later upward crossing in (1, t+dt).

Application of the above equations to particular statlionary



random processes requires a knowledge of p+|_(a, 1) and p+|*(a,r).

These may be expreséed in terms of the joint density of x(t) and
its first derivative at times t = 0 and t = v, Let g(u,vi;u’',v';t)
be the joint probability density of x(0), i(O), x(t), and ;(r)
which are represented by u, v, u', and v' respectively, The
probabllity of a downward (or upward) crossing of x = a in a time
interval dt is N:dt where N: is [7] the expected number of upward
crossings of x = a per unit time; Thus the Jjoint probability of
a downward crossing of x = « Zn an interval dt;at t = 0 and an
upwérd crossing11n an interval dt at t = t is N:dt p+|_(u, t)dr,
But this is also given by the probability that a<x(0)<a+|x(0)]dt

with x(0)<0 and that a=|x(1)|dr<x(t)<a with x(1)>0, Thus
Ntae (a, t)dr
a p+|- ’

= f:ff,fz_lv.|d1f:+lv|dtg(u,v;u',v'; 1)dudu'dvdv'

(13)
Carrying out the inner two integrations,
p+l_(a, 1) = ﬁr ]:jgalvv'|g(u,v;a,v';r)dvdv' (14)

Similarly,

p+|+(q. 1) = i: f:]:lvv'|g(a,v;a,v';x)dvdv' (15)
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For large 1 the values of x(1) and x(t) become independent
of x(0) and x(0), and g(a,v; ,v';t) approaches Breglos V) &2 (a,v'),

The double integrals in (14) and (15) approach (NZ)2 and thus

lim p, (e, ©) = Ump, ,(a, 1) = N

T+ T>w

(16)

Since p+l_(a, t) and p+|+(a, 1) remain finite as t1+= their
Laplace transforms have singularities of the form NZ/s. It is

convenient to remove this singularity by defining

fI|*(G. S) a f

+ @ +4 -
42(e, 8) = NG = [0, (o, T)-N}]e™®Tdr,

s
(17

Thus equation (11) for the Laplace transform of the recurrence

density becomes, upon multiplying numerator and denominator by s,

N" + 8 f:l;(a, s)

f (G. S) = 2
r ot 3 M
Ny ¥ 8+ Fal+

(18)

(a, 8)

The mean recurrence time T (that 1is, the average time between

successive downward and upward crossings of x = a) 1s

T (e, ar = - -:-;- [£.(ey )1 g (19)

Computing the derivative of the transform from (18) yields



-3-; [f (ay 8))gog = - -;-;- (141} |4 Ca, 0) = £ (a, 0))
a

or

T = i: il - f:[p+l_(a.t)-p+|+(a.-t)]d€} . (20)
. |

Higher moments of the recurrence time are related to moments

of the first-occurrence time by (6) and may be calculated from

R G L el o T CHE DD

oS (21)

th

A general expression for the n moment, valid for any n, seems

difficult to obtain., However, particular moments may be found

and after some algebraic manipulations results for 12 and 13 are

< 2 = | - e
'[2 = ;\I-':: T &1 + ]o [p+|+(u. T) - NG]de
2 o ‘
+ ;T IO T[P+|+(G, 1) - p+l_(a, 1) Jdx (22)
a
———— 3 ——— - +
3 = = ) &1 + [ Ioy ey ) - Na]dti
o
v & T e, G, ) - NTIdr
Nt o |+ a
a

f: Tz[p+‘+(ab T) - P+‘|_(G. T)]dT (23)

=2 jw
Q +



The integral f; pr(a, 1)dt = fr(a, 0) should yield unity,
It 1s readily verified from (18) that f.(e, 0) = 1, and thus the
renewal process approximation gives a result for pr(u, T) which
satisfies this basic restriction on a probability density. It
is perhaps surprising that the renewal process approximation also
gives the correct mean recurrence time; this result is proved

in the Appendix.

The renewal process approximation will be applied in a later
section to provide numerical examples of the first-occurrence
density for some speclial cases of Gaussian processes, Summarizing
briefly, the method of calculation is first to compute p+|_(a, t)
and p+‘+(a, t) from the joint probability densities of x(t) and
;(t) as in (14) and (15). Then the mean recurrence time T is
computed from (20), and the recurrence density pr(a, 1) from the
renewal integral equation (12), The first-occurrence density
Po(a, t), necessary for the computation of the probability of

failure given in (1), 1s determined from (5) in terms of T and

pr(a. T) .
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Limiting First-Occurrence Density

Since in applications one is generally concerned with the
statistically rare crossings of a high level a, 1t 1s of conslde-
rable interest to investigate the limiting form of the first-
occurrence density as o approaches infinity, Some simple arguments,
to be given below, suggest an exponentialdistribution of first-
occurrence times, However, a rigorou; proof has not been obtained

and some of the difficulties encountered in this connection are

pointed out,

Results for the limiting distribution will be derived in a
form valid for both stationary and some nonstationary random pro-
cesses, It will be convenient first to redefine the first-occur-
rence time densitv so that p,(o, t)dt is the probability that the
first upward crossing of x = a occurs in the time interval (t,t+dt),
This differs from the previous definition in that it is no longer
given that x(0)<a 3 the difference 1s unimportant since for large
o there 1s a negligible probability that x(0)>ax, The probability
of the first upward crossing of x = o in (t, t+dt) is the product
of the probability of an upward crossing in (t, t+dt) given no
prior upward crossing in (0, t) and the probability of no prior

upward crossing. Thus
po(a, t) = ula, t{(0, t)] {1 - IZpo(a, T)d'\?} (24)

where ula, t|(0, t)Jat is the probability of an upward crossing
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in (t, t+dt) given no prior upward drossing in (0, t)., Solving

(24) for the first-occurrence density,
Pofa, t) = wla, t}(0,t)] exp {- !;u[u. t] (0, 1)](11} (25)

The definition of wla, t| (0,t)] suggests that, for large a,
ula, t|(0, t)] approaches N:(t). Consider first the case when t
is small, Here one has; regardless of the value of a,
ula, t](0, t)] = N:(t) (with an equality holding as t-+0) since
the probability of a crossing in (0, t) prior to the crossing
at t is correspondingly small, When t is not small, the same
approximation is suggested for large values of a, since the cros-
sings of x = a will then be statistically rare evenﬁs and prior
qrossings may be eipécted to have g negligible influence on the
probability of a crossing in (t, t#dt). Thus, for large a,
ule, £](0, £)] = N'(t), and (25) yields for the limiting first-

occurrence time density
+ t
Pola, t) = Na(t) exp‘{- ION:(T)dT} (26)

For stationary processes N:(t) = Nz, a constant, and (26)

becomes

+
po(a, t) = N. e~Nat (27)

The corresponding recurrence time density may be found directly
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from (5). Noting that the mean recurrence time, ¥, approaches
+
l/Na for large a, one has

+
~ '.' -NuT
pr(a. T) = Nu e

(28)
Another way of viewing (26) is as follows, Due to the very
large average time interval between excursions above x = o and
the comparatively short duration of the excursions, one may view
the excursions above x = o as a random process of point events in
time occuring independently at a mean rate N:(é). It 1s well
known [7] that éuch a process leads to an exponential distribution
identical to (26) for the walting time before occurrence of an

event or, in present terminology, the first-occurrence time,

The approximate first-occurrence time density for large a
given by (26) requires only a knowledge of N:(t) which 1s readily
computed from (7) once the second~order joint probability density
Beg (U, V3 t) of x(t) and ;(t) is known, This results in a consi-
derable simplification when compared to the renewal process approx-
imation of the last section or when compared to a procedure based
on retaining only, say, the first tﬁo terms in the inclusion-exclu-
sion series, Both of the latter approximations require a knowledge
of the fourth-order Joint density of x(t,), £(tl) and x(t,), ;(tz).
Aside from computational difficulties which may arise even if this
density 1s known, the information available on a particular sto-

chastic process may not be sufficient to determine the fourth-order
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density. For example, 1n the case of stationary Gaussian processes,
the second-order density requires only a knowledge of the mean of

x and variance of x and ;; the fourth-order density requires in
addition that the correlation function of the process and its

first two derivatives be known for all time, Furthermore, the
second-order density gx*(u, v) may be found [8] as the stationary
solution to the Fokker-Planck equation for a general class of non=-
linear dynamical systems subjected to white excitation, leading as
in [9] to expressions for N: in terms of the system potential

energy at the level x = a, Corresponding results are unknown for

the fourth-order densities of such systems,

Equations in some respects similar to (27) and (28) are given

in [10] where, in the present notation, the relation p. (e, t) =

+,
2N: e”2Nab 15 obtained and in [11] where the relation po(®, t) =

+
2NZ e"?¥at 15 obtained, That the result of [10] is inappropriate

is readily seen by noting that it glves a mean recurrence time
T = 1/2N: instead of the correct l/Nt for large o, The result of
(11] is similarly inappropriate since it yields p,(e, 0) = 2N:.
But from (5) it is clear that po(a, 0) = 1/F which approaches N:

for large a,

Defining fallure as the first exceedance of x = a, the proba-
bility P.(a, T) of failure in time T is from (1), after using (26)

for pola, t),
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Pola, T) = €o+(1 - ea) {l - exp [=- f;N:(T)dT]} (29)

Reference [12] gives methods for determining upper and lower
bounds on the fallure probability Pr(a, T) for processes starting
at x(0) = 0, Generalizing the results of [12] to account for
processes which do not necessarily start at zero, one obtains

an upper bound by noting that the probability of failure in dt is

d Ppla, T) = Po(a, T+dT) - Po(a, T)

max max
= Prob {O<t<T x(t)<a and T<t <T+4T x(t)>u}

‘ max +
< Prob {x(T)«x and ,, 12X 4p x(£)>af= NE(TIat, (30)
since the probability that x(t)<a for all points of (0, T) is less
than the probabllity that x(t)<ea for any one point of (0, T).

Integrating subject to the initial condition Pf(a. 0) =€ 4
T.+,.
Pela, T)< e, + foNa(t)dt (31)

Comparing with (29) and noting that l-e ' <x for any positive x,
it 1s seen that the first occurrence density approximation of
(26) yields through (29) a fallure probability always below the
upper bound of (31). A lower bound to the fallure probability is

found by writing
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| max
Po.(a, T) = PrOb’O<t<T x(t)>a}

> Prob zx(t)>u for any t in (O, Tﬁ

=c¢,  (t), all t in (0, T), (32)
Here Eu(t) is the probability that x(t)>a, For a stationary
process ca(t) = ea(O) = ¢ for all t, and thus the expression
for Pf(u, T) given by equation (29) 1s always above the lower
bound of (32), There is no obvious reason that this expression
should satisfy the bound of (32) in the general case of non-
stationary processes, and apparently each case must be checked

separately,

In spite of the plausibility of the result, a convincing
proof that po(2, t) tends to the exponential distribution of (26)
for large o has not been obtained, Sufficient conditions under
which (26-28) result from both the densities as given by the renewal
process approximation of the last section and as given by exact
inclusion-exclusion series are discussed in [13]. Essentially, the

type of conditions required are in the stationary case

a7 oy (e, £) - Njlat = 0 (33-1)
SIS Ipap @ By t2) = (N3)?] dtydtp= O (33-2)

The difficulty in verifying these expressions is due to the



extreme complexity (as may be noted from expressions of the next

section) of the functions p+|_(a. t), p++'_(a. ty, ty)

The meaning of equations (33) is made clear by discussing the

first. The integral f§p+|_(u. t)dt 1s the conditional expected

number of upward crossings of x = a in (0, T)given a downward crossing
of x = o at t = 0, and ]:N:dt 1s the unconditional expected

number of upward crossings of x = a in (0, T), Equation (33-1)

then requires that, as a+=, the difference between the conditional

and unconditional expected numbers of upward crossings in (0, =)
approaches zero, There is little difficulty in justifying

p+‘_(a. t)+0 and Ni»o as a**, Further, from (16), p+‘_(a,t)+N;

as t+» as 1s required for the integral to exist, Thus, 1f the
integral converges uniformly [14] so that the limit on a may be

taken inside the integral sign, (33-1) is satisfled, Uniform
convergence is assured if f;[p+|_(a, t) - N:]dt (which represents

the difference between the conditional and unconditional expected
numbers of upward crossings in (T, =)) can be made arbitrarily small
by choosing,independently of a, a correspondingly large T. Essen=-
tially, then, 1t 1s required that the dependence of p+l_(a. t)

on 1ts conditioning at t = 0 dies out sufficiently fast in time

for all a. One expects the conditioning influence to dominate

p+‘_(a. t) only for times comparable to some characteristics of the
process, such as 1/2NZ, the mean time between crossings of x = 0,
so that the time of conditioning influence is negligible in compa-

+
rison to times of the order of the mean recurrence time, 1/N

o» fOT

large oa.



Application to Stationary Gausslan Processes

Formulae required for the determination of the first-occur-
rence and first-recurrence time densitlies are given in this
section for the technically important case of stationary Gausslan
processes, Expressions are given for N: as required in the limi-
ting distributions for large ¢ of (27) and (28), and for p+(_(0,t)
and p*|+(a. t), defined respectively by (14) and (15), as required
in the renewal process spproximation, Numerical examples are

given for processes with 1dealized spectra,

From [1], for a Gaussian process, N: as defined by (7) 1s

" 1/-2
- i {.—.‘.‘..S.Q).} exp [. i _f_} , (34)
on R(0) 2 R(0)

where R(t) = E [x(t)x(t+t)] 1s the correlation function of the
process, The fourth-order joint density function g(u,vju',v';1)
of x(0), ;(0), x(t), and ;(1) is required in the determination of

p+|_(a, T) and p+|+(a, 1), In the Gaussian case this is [15]

g(u,viu’ ,vtst) = et exp{--l-' [s11u?+s22v24s33u' 24s44v' 2]
(2n)2/TM] 2
-slzuv-sz3vu'-s3“u'v'-sl“uv'-sl3uu'-szuvv} (35)
th

where 8y i1s the element of the 1 row and jth column of the

J

inverse of matrix [M] and where |M|is the determinant of matrix



[(M], the matrix [M] being defined as

(R(0) 0 R( 1) R'( 1)
0 «R"(0) =R'(71) -R"( 1)

(M] = (36)
R (1) =R* (1) R(0) 0 v R
LR'(T) -R"(1) O -R"(0).

The considerable amount of algebra required to express (35) in
terms of the'correlation funcvion R(t) and its/first two deriva-

tives is omitted here, After making the change of variables

822 ' Suu 822 Syy
X B @V o s ¥V = v! w in (lu) and X = V  ecowem y ¥y = v! —————
i 2 2 2

in (15) one obtains

P (a, 1)=Ae'B°2f“j° Xy e'(xz*zcxy+y2)*2D°(X+y)dxdy (37)
*+|- )
p+'+(u, T)=Ae-Ba2 IQL: xy e_(x2_2cxy+y2)+2Da(y-x)dxdy. (38)
0

Here (A, B, C, and D are functions of t expressible in terms of
the correlation function R(71) = RT and its derivatives by
5 Ry 1M|3/2

A= A(T) = =
m -RS g2
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4
= = l " 2 2y4 |2\
C = C(1) s [R"(RZ-R2)+R R} j, and

D = D(1) = wimwwnes (39)
8

where
2
IM[ = (R,RE - R.R" + R12)% - (RGRY = RRY® ,

= R"(R2 o RZ2) o 2
8 _RO(R RT) Ry RY ,

.
v = (R, - R (R} + R} + R} (40)

The double integrals in (37) and (38) cannot be evaluated in
closed form, but by changing to polar coordinates both can be
reduced to single finite integrals, Performing the change of
variables x = r cos 8, y = r sin 6, (37) becomes
1 ~Ba? n/2 o «r2(l4c sin 26)+2Dar(sin 6+cos 6)
Py|(ay7)==he {7/<["r3sin 26 e drde
(41)

Carrying out the integration in r,

-B

2
o ln/2 sin 26

Pyl (a,7)=dpe
- i 0 (l+4c sin 28)

2
[nz,(3422)e?](1+ers z,)+1+z3]d0,
2

(42)

where
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Da(sin 6 + cos 6)

zy = 21(a, 1, 0) =
Y1 + ¢ sin 26

(43)

The equation for p+'+(a, 1) 1s identical to (U42) except that ¢

1s replaced by -c and z, is replaced by Z, where

Da(sin 6 - cos 6)

Y1-¢ sin 260

Z, = Zy(a, 1, B) =

(4h)

Noting the symmetry of z; about 6 = n/l4 and the anti-

symmetry of z, about 6 = /4, the equations for p+|_(0. 1) and

Pa el O become

; -Baz
by (ay O=kae” " [7/4 _sin 20
2 0 (1+c sin 28)2

[/v z%(2+z%) ez% (1 + eff zl) + 1+ z%] de (45)
2 ;

-B

2
a
p+|+(0, T)' l Ae f‘"/h sin 26
2 0 (l1-c sin 28)2

2
[/7 2,(3 4 22) e®2(erf z,) + 1 + z2] do (46)
2 ,

The above integrals are expressed in a form convenient for nume-

rical evaluation,
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Results of numerical calculations of the first-occurence
time density po(e, t) are given below for some stationary Gaussian
processes with idealized power spectral densities, The spectra
considered are constant over a certain frequéncy range and zero

for all other frequencies, having the mathematical representation

02
——————— f()r ch<w<mc
(1-8 )wc
S(w) = (47
I‘ 0 otherwise,

where ch is a lower cut-off frequency, W, is an upper cut-off
frequency, and o2 1is the variance of x(t). The correlation

function for the process x(t) is [1]

R(t) = E [x(t) x(t+¢)]

= f;S(m) cos wt dw

2
R(T) = e [sin w, T - sin emcr] . (u8)

(l-B)wcT
In performing numerical calculations 1t is convenient to
suppress explicit dependence of the results on the variance o¢?2
and cut-off frequency W, . To this end the dimensionless times
V =w,t and ¥ = w 1 are introduced, and the normalized dimension-
less process y(¢) = x(t)/o 1s considered, The correlation function

Ry(w) of the process y(y) is
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Ry (¥) = E[y (v)y(v4¥)] = 22 Ex(t)x(t+¥/6 )]
02 ¢
= o R(v/w) (49)
2 (o

[of

Substituting from equation (48) for R(71),

R, (¥) = ——mtem [5in ¥ = sin 8v] (50)

y (1-8) v
Calculations are made of the first-occurrence time density
pPo(0/0, ¥), where po(a/o, ¥)d¥ is the probability, given y(0)<o/o,
that the normalized process y(Vv) first crosses the level y = a/0
in the dimensionless time interval (¥, ¥dV¥), Clearly this is
also the probability, given x(0) <e, that x(t) first crosses the

level x = a when w t is in the interval (v, y+dv),

Equation (27) glves an approximation to the first-occurrence
density for the statistically rare crossings of high levels in
terms of the expected number of upward crossings of the level per
unit time. Using equation (34), the expected number of upward
crossings of y = o/o per unit dimensionless time (that is the

expected number of upward crossings of x = a per unit of wct)

becomes
1/2
-R"(0) 2
N:/o = ..:L. AN exp [- .].'. L?-Lg-)-—]
on Ry(O) 2 Ry(O)

= L\/_}.:Ei_ exp [- = 9-3-] . (51)
2m | 3(1-8) 2

Q
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slnce Ry(O) = 1 and R;(O) = - (1-83)/3(1-8), Thus equation (27)
for the first-occurrence time density for large o, namely

Pola/a, ¢) = N:/o exp (-N:/ow), becomes

po(u/o, V) = }- --]-'—.9-—. exp (- }. 9‘_._)
2n 3(1-8) 2 a2
-R3 2
exp [- N A1 A exp (- S =)l (52)
27\ 3(1-8) 2 o2

Numerical results were obtalned from the renewal process
approximation for values of equal to o, 20, and 30 for each of
two random procésses, one process having an ideal wide band spectrum
with 8 = 0 and the other process having an ideal narrow band
spectrum with g = 1/2, The calculation is started by finding the
functions p+|_(a/o, ¥) and p+l+(a/o, y) defined for Gaussian
processes by (45) and (46), for y = w,t = 0,.25,,50,,75,444,50,00,
The value ¢ = 50 is approximately ten times the average distance
between zero crossings, The integrations from 0 to =/U4 on ¢
required in (U45) and (46) were carried out by computing the integrand

for ¢ = 0, n/64, v/32, .v., /4 and summing, Once (a/o, V)

o+|_
and p+|+(u/o, v) are determlned, the first-recurrence time density
p.(a/c, ¥) is found from the renewal integral equation (12), which
was obtained by making the renewal process approximation in the

exact inclusion-excluslon expression for the recurrence density,

In terms of the present dimensionless notation, (12) becomes
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p+l_(u/o, ¥) = pla/o, ¥) + fgbr(u/o, v)p+|+(a/c, p=v)dv (53)

The equation was solved for v = 0,,25,.50, +.,.,125,00 by repla-
cing the integral by a summation, Clearly, the solution for

pr(a/o, V) depends only on the known functions Pyl- and p+‘+

and the past values of Pps thus the solution of (53) is readily

obtained recursively, The limiting value N:/o was used for Py |-

and p+‘+ when ¥ was greater than 50, The mean recurrence time is
obtained from (20), an expression which, although derived through
the renewal process approximation, ylelds the exact value of the

mean recurrence time, as shown in the Appendix, In terms of

the present notation the mean dimensionless recurrence time V is

7= 4— {1 - f:[p+|_(a/0, ¥)=p, |, (o/0, W)]dtv} (54)
Na/a

The integration was carried out numerically by replacing
the infinite integral by a summation in ¢ from 0 to 50, at inter-
vals of .25, Finally, equation (5) ylelds the following expression

for the first-occurrence time density in terms of the flrst-recur-

rence time density
po(a/o, ¥) = === [1 = [% (0/0, v)av] (55)
o » w o r »

Again the integration was replaced by a summation gliving the

first-occurrence density for ¥ = w .t = 0,425,450,444,125,00,
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Results of the computations are shown by the so0lid lines
in figures 2, 3, and U for the wide band spectrum (8 = 0) with
a= g, 20, and 30 respectively. The dashed lines are plots of
the limiting exponential distribution for the first-occurrence
density as given by (52), It is seen| that, as o increases, the

agreement between the renewal'process’approximation (s0lid lines)

and the exponential distribution (dashed lines) becomes increasingly
good., When/a = 2¢ the difference between the two curves as shown

in figure 3 1s less than 7% for small values of y = w,t, and for
larger vaiues of y the difference becomes negligible, When a = 30
as shown in figure/“/the difference 1s completely négligible,

having a value of less than i%.

The results verify the valldity of the exponential distribu-
tion for lafge ¢ in the case of processes with wide spectra, and
show a very rapid approach to the limiting distribution as o is
increased, A similar verification is obtained in the case of

processes with narrow spectra, but here the approach to the limi-

ting distribution is considerably slower,

Filgures 5, 6, and 7 contain results of the computatlons for
the narrow band spectrum (B=1/2) with e =0, 20, and 3 respecti-
vely., When a = 2¢ the difference between the renewal process

approximation and the exponential distribution, as shown in figure

6, has a maximum of about 11% for small values of y and the
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difference persists, in contrast to the wide band case, for
larger values of vy, lWhen a = 30 as shown in figure 7 the dif-
ference decreases to‘a value of about 5% which persists over the
entire portion of the time axis shown, It is clear that ulti-
mately the two curves of figure 7 will meet since it can be

shown that the area under each is equal to unity.

The results lndicate a considerable difference between
processes with wide and narrow band spectra with regard to the
rapidity of approach to the exponential first-qccurrence time
disﬁribution, and indlcate that in situations requlring great
accuracy some céution is necessary in applying the exponential

distribution to narrow band processes when the crossings of the

level under consideration are not statistically rare.

Unfortunately, the renewal process approximation seems least
appropriate 1n the case of narrow band processes for these have
correlation functions which approach zero rather slowly with time,
indicating a high degree of dependence on past.values. Basic to
the renewal approximation is the assumption that the probability
of an upward a crossing, given several past upward crossings,
depends approximately only on the last prior crossing, Clearly,
such an approximation 1is best for processes with little memory.

In fact, for all three cases of narrow band processes consldered
here the renewal approximation yielded some negative values of

the recurrence time density pr(a/o, ¥). This may be inferred by
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l

noting the existence of relative minima in the graphs of
Po(a/o, ¢) in figures 5, 6, and 7. From (55),the derivative
with respect to y of po(a/o, ¥) 1s proportional to 'pr(°/°' ¥)
indicating that po(a/0, ¥) should have no minima, The fact
that the calculated values of p (a/0, ¥) took small negative
values over some short time intervals 1s reflected in the
figures by the small positive slope of the curves at certain
intervals on the time axes, A simllar behavior was noted in
[4] in connection with the application of a renewal process

approximation to the zero crossing problem,



Aggendix

It was indicated that the expression obtained for the firste-
recurrence time probability density, pr(a, 1), by the renewal
process approximation not only satisfies the condition
f;pr (a, 1)dr = 1, but also ylelds the correct value of the mean

recurrence time T, This last point will now be proved as follows.

Let T' be the average time between successive upward and

downward crossings of x = a (Fig, 8), Then T + T' 1s the average

time between successive upward crossings of x = a and T + T' =

l/N:. Solving for T yields

?=§,<1- T, (56)
a

It will be shown that this expression i1s identical with the

expression (20) obtained by the renewal process approximation,

Let A(1') be the probability density for the time t1' shown
in figure 8 between successive upward and downward crossings of

X = o, and let Py | (a, t|1') be the probability of an upward

crossing of x = o in (t, t+dt) given, as in figure 8, a downward
crossing at t = 0 and that the last upward crossing prior to

t = 0 occured at t = -1', Then by the law of conditional proba-
bility
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p+'-(a. t) = ]:p+|_(a. t]r) Alr")ax? (57)

Consider f:p+|+(a, t)dt, which 1s the expected number of upward

crossings of X = a in (0, T), given an upward crossing at t = 0,
Referring to figure 9, let t' be theftime of the first downward

crossing after the upward crossing at t = 0, If ' is glven and

1'<T, the expected number of upward crossings in (0, T) is
$'p+|-(c' tet'|t')dt; if tv'> T the expected number of upward
crossings in (0, T) is zero, Thus the difference between the
conditional expected number of upward crossings of x = a 1n

(0, T), given a downward crossing at t = 0, and the conditional
expected number of upward crossings of x = a in (0, T), given an

upward crossing at ¢t = 0, 1s
f: [P+|_ (o, t) = p+|+(a, t)lat
= j§p+|_(u"t)dt - I: X(T')]fvp_'.l_(“.t"f'IT')dth'

- I-Top+,_(a. t)at - f‘;x(r') jTo“"p+|_<a,t]T'>ath'

IZ [p+|_(a, t) - f§p+'_(a, tlrt)a(r)dr ' 1at

+ fzx(r')fi_T,p+'_(a, t]r')dtar’

" [pyy oy t) = [Py -ty tlr G ar et 4
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T e, ' '
+ /O[Tx(ro)p+|_(a, tlr)dr'dt

|

T | T
+ fox(r') IT-T,p+l_(u‘ tft')dt ar (58)

The first of the three integrals in thé last member of
(58) is identically zero by (57). The second integral will
now be shown to approach zero as T approaches infinity, We
assume that, regardless of the value of 1' shown in figure 8,
the averége number of upward crossings of x = o per unit in any
interval (0, T) following the upward crossing’at t = -=t' and
the downward\cﬁossing at t = 0 shown in figure 8 is bounded by
some number M. Thus & f:p+|_(u, t|t')dat<M for all ', a mathe-
matical statemént of zhe plausible assumption that an arbitra-

rily large 1' will not induce an infinite number of crossings of

X = a in any finite time interval, Then
T pe o T
[OIT X(T')p+‘_(a. th')d‘r'dt = ITA(T')IOP.F I_(“a tltt)atar

<f;l(r')MT'dt' <M ]:r'x(r')dr'. (59)

' The last term of (59) clearly approaches zero as T approaches
1nfin1ty since 1! exists, and thus the second integral in the
last member of (58) approaches zero, Thus in computing the limit
of (58), one needs only find the 1limit of the third integral in
(58).
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. Therefore

[otpy)Car £)=py 4oy )1a = 227 2o (o, £)-p, (e, t)AE

= Mm Txger) J2 P, (a, t|c')dtd+’
T Tet1' "+ =

o lim 7
= IOX(T') T T_T,p+|_(u, t|x')dtdr’

= f;k(t') N: ' di' = N: T, (60)

lim

since e (a, t|t?) » N:. Thus equations (20) and (56) are

lidentical, proving that the renewal process approximation yields

the exact value of the mean recurrence time,
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